3D printing of capillaries and vascular system very faithful thanks to new material

A new material could allow the realization, through 3D printing, of artificial tissues more similar to human vascular structures, according to a statement referring to a new study published in Nature Communications.
Researchers at the University of Nottingham and Queen Mary University in London have in fact discovered a method to print graphene oxide in 3D using a protein which can organize itself into tubular structures that seem to replicate, more or less faithfully, several important properties of the same vascular tissue.

Professor Alvaro Mata explains the results of the study: “This work offers opportunities for biofabrication by allowing the simulated top-down 3D bioprinting and self-assembly of synthetic and biological components from the bottom upwards in an orderly manner at the nanoscale. We are biofabricating micro-scale capillaries that, like fluid structures compatible with cells, have physiologically relevant properties and the ability to resist flow. This could enable the recreation of vascularization in the laboratory and could have implications in the development of safer and more efficient drugs, which means that treatments could potentially reach patients much more quickly.

By controlling how graphene oxide binds to the protein, this assembly can be guided on very small scales to print frameworks with very complex geometries and up to 10 um resolution.
A good step towards laboratory replication of very important areas of human tissue and organs in general, as Yuanhao Wu, the study’s principal researcher, suggests.

This entry was posted in Scientific News. Bookmark the permalink.